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1. Statistical Science, data analysis, and Buffalo snowfall

Statisticians complain about the failure of universities

to adequately educate students on how to analyze statistical

data. At the same time some statisticians state that data

analysis is an art, and thus cannot be taught. When these

statisticians speak of statistical science it is difficult to

imagine to what they are alluding since they seem to

sneeringly reject all attempts to reason, and reach consensus,

about the evaluation of methods to be used as part of the process

of statistical data analysis.

I would like to propose a data set which I believe provides

a useful test case for various approaches to data analysis,

namely the annual time series of snowfall in Buffalo, N.Y. The

segment of that series which I will discuss is 1910-1972,

although it has many interesting features when extended to 1981.

The data analysis question to be considered is: What probability

distributions can be used to describe Buffalo snowfall. An

ever-present hypothesis to be considered is whether Buffalo

snowfall is normal.

2. Functions that describe probability distributions

The probability law of a continuous random variable X can

be described by one or more of the following functions:

(1) Distribution Function F(x) - Pr [Xcx]

(2) Probability Density Function f(x) - F'(x)
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(3) Quantile Function Q(u) F-  (u)

= inf {x: F(x) > u)

= inf {x: F(x) = u) if F is continuous

= x such that F(x) = u if F increasing at x

(4) Quantile-Density Function q(u) = Q'(u)

(5) Denstity-Quantile Function fQ(u) = f(Q(u))

Theorem: For F continuous

FQ(u) = u , fQ(u) q(u) - 1

3. Raw functions that describe samples

Data X1,... ,Xn is called a random sample of X when

X1,...,X n are independent random variables identically

distributed as X. An important role in the analysis of a sample

is played by the order statistics X(I) < X(2)'<. .. < X(n)

(1) Sample Distribution F(x) = fraction X1 ... ,Xn _ x

X <c
n ' (j)<_ x<X(j+l)

(2) Sample Probability Density, or Histogram, estimates

f(x) by a numerical derivative

F(x+h) - F(x-h)f(x) =Z

(3) Sample Quantile Q(u) - Fl(u)

- X(j). n - n

A universal display of any data set is provided by the quantile

box plot introduced in Parzen (1979).

-
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(4) Sample Quantile-Density is a numerical derivative

q~)=Q(u+h) - Q(u-h)
q~u) =2h

(5) Sample Density-Quantile = fQ(u) = l/q(u).

An important formula is

f(X()) = n 2 {(n+l)(X(J+ 1 )-X( Jl)) -I

4. Smooth functions that describe samples and estimate

probability distributions

The functions F, f, Q, q, fQ that represent the true

probability distribution of a random variable X are estimated by
A ' A 6A

smooth functions F, f, Q, q, fQ which are derived from the raw

descriptive functions F, f, Q, q, fQ. One distinguishes between

parametric and non-parametric methods of estimating smooth

functions.

A parametric estimation method : (1) assumes a family

F8, fo' Q0, qo' foQ8 of functions, called parametric models,

which are indexed by a parameter 6 = ( l, .... 8k); (2) forms

estimators 8 = (6k,.... 'k) of e; (3) forms smooth functions by

F(x) = F^(x), f(x) = f6(x),

Q(u) = Q^(u), q(u) - q-(u),

fQ(u) = f^Q-(u).

A non-parametric estimation method forms estimators which

are not based on parametric models. Important examples of

non-parametric estimators of a probability density f(x) and a
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quantile-density q(u) are respectively

1 O
f(x) = . f K(x) dF(x)

q(u) = flj KQ!u-t) dQ(u)
0 
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for suitable kernels K(-) and bandwidth 6.

5. Parameter estimation and information divergence

When a parametric model f, is assumed, parameter estimators

are often determined by minimizing a "distance" between f(x)

and fY(x). A "distance" between two probability densities f(x)

and g(x) is denoted I(f;g) and is called an information divergence

between f(x) and g(x). It is usually not symmetric in f and g.

It does not satisfy the triangle inequality for a metric. But

it does satisfy l(f;g) > 0 and I (fig) = 0 if and only if f = g.

The most famous, and most important, definition of

information divergence is

Il(f.6) = f - log{f{x} f(x) dx

called the information divergence of order 1, or Kullback-

Liebler information divergence. Information divergence of

order a is defined for a>O (but a 0 1) by

I (f4.g) -1 log fo { }ll-af(x) dx.

The most important values of a are 0.5<a<2.

Bi-information divergence is defined by

II(f;g) - foIlog { xf)1 2 f(x) dx;

it may be regarded as related to 12 (g;f).
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Information divergence of order 1 has an important decomposition:

l(f;g) = H(f;g) - H(f)

defining

H(f;g) = f{ f-log g(x)} f(x) dx,

H(f) = H(f;f) = fo {-log f(x)1 f(x) dx.
-O

We call H(f;g) the cross-entropy of f and g, and call H(f) the

entropy of f.

Maximum likelihood parameter estimation can be shown to

be equivalent to minimum cross-entropy estimation. The

likelihood function of a parametric model f0 is defined by

L(fe) = log f 0 (Xl,... Xn)

n
= t log fe(xt)

t=l1

One may verify that

L(fe) n -log fs(x) dF(x)

= -n H(f; fs).

The maximum likelihood parameter estimator 0, defined by

maxLf )
L(f-) = m

clearly satisfies

H"~- min H(f;f-~~ = mmf8

It also satisfies

In general parameter estimators e are found by minimizing

I,(f;f 8 ) or I,(f 8 ;f). Chi-squared estimators minimize 12 (fo;f)

while modified chi-squared estimators minimize 19(f;fA).
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To compute 1(f;f8 ) one needs to compute H(f). A useful

formula for accomplishing this is

H(f) = fI{-log f(x)} dF(x)

f fl {-log fQ(u)} du

0

f fl log q(u) du.
0

The value of Il(f;f ) can be used to test the goodness of fit

of the parametric model f8 "

6. Information and bi-information parameter estimation, and

comparison distribution functions

Given a sample with sample probability density function f

and parametric model f., one can form diverse parameter
V

estimators, denoted 6 and 8, corresponding to two choices of

information divergence which we take to be: (1) 11 (f;f,), and

(2) 12 (f,;f) or II(f;f,). We call 8 and 0 diverse parameter

estimators. For greater precision we call e the (order 1)

information estimator, and 4 the bi-information estimator.

When the parametric model f. is exact, the diverse

parameter estimators have equivalent statistical properties;

they are both asymptotically efficient estimators, and are not

significantly different from each other.

When the values of 8 and 'e computed from a sample are

significantly different one should suspect that the parametric

model f, does not fit the data. The Shapiro-Wilk statistics
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for testing normality and exponentiality can be regarded as

comparing diverse estimators which minimize information of

order 1 and 2 respectively.

One can interpret 6 and 6 as parameter values of "best

approximating" models.

One wishes to evaluate F (x) and F(x) as smooth estimators

of F(x). For any parameter value 6, define

D6 (u) = FO(Q(u))

which is the sample quantile function of the transformed

random variables

U1 F(X I), ... ,Un = F0 (Xn)-

The true parameter value 0 has the property that U1,...U n

are distributed with a uniform [0,1] distribution. Then
V

parameter estimators 6 and B are compared by the character of

the closeness to the identity function D(u) = u of D-(u) and

Dv'(u).

We call Do(u) a comparison distribution function. Its

derivative

de(u) = {De(u))'

plays a basic role and is called a comparison density; formulas

for the comparison density are

de(u) - f0 (Q(u) q(u)

- fe(Q(u))

f Q(u)
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An alternative comparison density introduced in Parzen

(1979), is

d(u) f0Q0 (u) q(u) (o

a= fJ f0Q0 (u) q(u) du,

D(u) =fu d(t) dt
0

where f OQ0 (u) is a specified density-quantile function.

Parameter estimators can be justified as minimizing

information divergence

I 1(d 0) = fJ -log d C(u) du=IIf~fe)

II(d 6) = fjl ~og d 0(u)1 2 du = II(f;f 0)
0

I (d)= 1 log f 1 {d (u)} 1 adu

1~ - 2 1 du2
f Ide~u) l 1 du -f 1de(u)12 u-

0 0

These measure the closeness to 1 of d8(u), or the closeness to

D(u) = u of D 6(u). However the final decision about parameter

estimators should be based on visual inspection of the graph of

D 6 (u).
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Another consequence of considering information of order

a is that we can unify the estimation criterion used to form

maximum likelihood estimators with the estimation criterion

used to form Gaussian time series parameter estimators:

I (f;f 0 ) = logfl f(w) dw

where f and f are spectral densities. It is comparable to

12 (de) = log fl fQ(u) du
o feQ(u)
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7. Statistical inference reduced to density estimation

The quantile approach to statistical data analysis being

developed by Parzen [since Parzen (1979)] is based on the

proposition that conventional problems of statistical inference

concerning (1) a random sample X18 ... Xn , (2) a bivariate

sample (XI,YI) ....,(XnYn), or (3) two samples X ..... X and

YI '.....Yn should be transformed to problems of functional

inference, estimating and testing hypotheses about density

functions d(u), d(ulu 2 ), .... d(ul....,uk), on the unit interval

O<u<l, unit square O<ulu 2<l, unit hypercube Oul,...,uk<l. To

illustrate how this is done consider the following problems.

Modeling Bivariate Data and Tests for Indpenedence. Let

X and Y be continuous random variables with joint density

function f xy(xy). The hypothesis, Ho: X and Y are independent

can be expressed

Ho: fxy(Xy) = fx(x) fy(y)

or in terms of information divergence

I r ff{-log fx(x)fy(Y)x,Yfxfy) -f fx,(Xy) fxy(xy) dx dy

by
Ho: I(fx'y; fxfy) = 0

Define

D(ul ,u2 ) - FX,Y(Qx(Ul),QY(u 2 ))



d(ulu 2) - a2 D(UlU2)

fX.Y(Qx(ul)'Qy(u
2))

fxQx(ud) fyQy(u2 )

We call d(ul,u 2) the quantile dependence density.

The hypothesis Ho can be expressed

Ho: D(Ul,U 2 ) = Ulu 2 , d(ul,u 2 ) = 1.

One can verify that

ii(fxY;fxfy) = fl f {log d(ul.u 2)) d(u1 ,u2) duldu2
0 0

- - Hl(d(ul,u 2 ))

Thus estimating the information divergence between fx,Y and

fxfy is equivalent to estimating the negative of the entropy of

d(ul,u 2).

Estimators dm(u) dependent on a finite number of parameters

can be formed from the raw estimator

D(Ul,U2) -f FX,Y(QX(Ul), Qy(u2)).

Modeling likelihood ratios and testing equality of

distributions. Let X and Y be continuous random variables.

The hypothesis

Ho: Fx(X) - Fy(X), or fx(x) - fy(x)
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can be expressed in terms of information divergence

fx (x )

t(fy;fx) =-f* -log 1x dFy(y)

= fi -log d(u) du
0

= -Hqd (d(u))

defining the comparison distribution function and comparison

density function

d D~)=fx(Qy(u) 
)

D(u) FxQy(u), d(u) = D(u) f(Qy(u))X Y fY(QY(u))

Estimating the information divergence between fy and fx is

equivalent to estimating the negative of the entropy in the

quantile-density sense of the comparison density d(u).

8. Parametric-select density estimation and Maximum Entropy

Densities

A density d(u) = D'(u) can be approximated in many ways

by sequences dm(u),m=l,2,... of functions which converge to

d(u). For m-l,2,..., let dm(u) be an estimator of dm(u); the

sequence dm(u) then estimates d(u).

If dm (u) corresponds to a standard finite parameteric

model d(u) for which one could consider testing the hypothesis

that dm(u) provides an exact model, we call dm(u) a parametric-

select representation, and dm(u) a parametric-select estimator,

seA. simtr



to indicate that we are free to select the number of parameters

in dM (u)D .provide an adequate approximation or representation

of d(u).

We call d m(u) a non-parametric representation, and d M(u)

a non-parametric estimator, if dm(u) does not correspond to a

standard finite parameter model which could be interpreted as

an exact model.

An important criterion for developing the functional form

of exact models for densities is the maximum entropy principles.

A density f(x), --<x<-, which maximizes entropy

H(f) = fm{-log f(x)}f(x) dx subject to constraints

fJC T (x) f(x) dx = tj9  j=l .. ,k,

where Ti(x) are specified functions (called sufficient statistics)

and T are specified moments can be shown to have the representation,

called an exponential model,

k
log f(x) - l Oj TJ(x) - (O,1 ... ,ek)

where

k
ek)- log fo exp {j % Tj(x)l dx

guarantees that f(x) integrates to 1.

A quantile function q(u), O<u<l, which maximizes entropy

Hqd(q) 1 j1 log q(u) du subject to the constraints
0
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f exp (2riuv) foQo(u) q(u) du
o,0= p(v), v-O,+l...., +M

f1 fQo (u) q(u) du - 4
0

where f oQo (u) is a specified density quantile function must have

the representation, called an autoregressive model,

q(u) = q(U) 02 I+aMe 2,Tiu+...+amWe 27rium -2

9. Exact-Parametric and Parameter-select Estimation of

Probability density Functions using Exponential Models

Two important exponential models for a density f(x),

-- <x<® are the normal density and the gamma density.

The normal density, denoted Normal (v,o)

f (x)
S1 2

W(x) exp- x

is exponential with sufficient statistics Tl(X) - x and

T 2
T2 (x) = x

The Gamma density, denoted Gamma (r,X) where X 1/o,

1

fr,o W fr (ax)

f W - 1xr-l e -x  x>0
r r <

-M 0 XcO
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is exponential with sufficient statistics T (x) = x and T2(x)

= log x.

A location scale parameter Gamma density

f _X x 1fr,,o ( a r a

is not an exponential model. We can treat it as one by

estimating p (say, by the minimum X(1 ) of the random sample

X1 ... ,Xn), and treating Xj-P as a sample from fr,a(x).

The hypothesis that the data is fit by a normal distribution

versus the hypothesis that the data is fit by a Gamma

distribution can be tested by forming an over-parametrized

exponential model with sufficient statistics

2 3
TI(x) = x, T2 (x) = x2 , T3 (x) = x3 , T4 (x) = log x.

The (order 1) information divergence, or maximum likelihood,
A A A

estimators e1, 02P e3' 04, which minimize information divergence

of order 1 f -log d,(u) du, may be found for an exponential
0

modelby solving

U ff E^[T ]

where T j 6E[TJ] is estimated by

T -j 1 Tj(X(j))
T = =n
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The bi-information divergence estimators Olt 62' 03' 84.

which minimize information divergence fllog d,(u)I2 du, may
0

be found using least squares regression analysis techniques by

minimizing with respect to el, .... ' k the sum of squares

n-i
IX 1iog f(X(j)) - flog f(X )-

j=2 j

-01 (T1(X(j)) - ¥1)-'''-ek (Tk(X(j))- fk)I2

Stepwise regression is used to suggest p3rsimonious parametrizations.

Graphical procedures to determine which parameter values

fit best are as follows: estimate D j=2,...,n-1, by

adding

)= fe(X(~)+f(X(j))_4 f(x))

and normalizing the sum to go from 0 to 1. One inspects its

graph to see how it deviates from D(u) = u.

10. Case studies of bi-information density estimation

The density estimators corresponding to the bi-information

parameter estimates of the normal, gamma, and four-parameter

exponential models are presented for four simulated random

samples:

1) Exponential or Gamma (r - , - 1)

2) Gamma (r-10, a -1)
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3) Normal (v = 0, o 1 i),

4) Contaminated normal: lOON(0,l),5N(l0,l)

In addition density estimators, using bi-information

parameters, are presented for the data set of Buffalo snowfall.

Bi-information select regression estimation of the parameters

of a 4-paramential exponential model with sufficient statistics

x, x2 , x3 , and log x leads to the conclusion that Buffalo

snowfall obeys a Gamma distribution. It is equally well fit

by a normal distribution whose parameters are estimated by

minimizing bi-information rather than order i information.

The hypothesis that Buffalo snowfall is normal seems to be

acceptable, but one can question whether the maximum

likelihood estimators (sample mean and variance) provide the

best-fitting normal distribution for Buffalo s.nowfall.

As in Parzen (1979), we reject a trimodal shape nrobability

density estimate for Buffalo snowfall, which has been found by

several non-parametric density estimation techniques;

including Tapia and Thompson (1978).
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